Unified Model Summary MD-only

Kolom: Accuracy, Macro F1, Weighted F1, Best Val Acc. Identifier: Transfer/CNN = Exp ID + Model ID; MLP = Run/Tag. File bernama 'best' tidak ditampilkan pada tabel.

🏆 Best Model Overall

Model: transferlearning  |  Exp ID: exp_tl_001  •  Model ID: MNv3l

Accuracy: 99.64%   Macro F1: 99.64%   Weighted F1: 99.64%   Best Val Acc: 99.33%

Open detail  •  Open MD

CNN

modelExp IDModel IDaccuracymacro_f1weighted_f1best_val_accdetailmd
Cnnexp_004D98.56%98.56%98.56%98.92%detailmd
Cnnexp_002B81.44%81.73%81.73%82.00%detailmd
Cnnexp_005E80.21%80.01%80.01%79.44%detailmd
Cnnexp_001A78.15%78.36%78.36%79.28%detailmd

Transfer Learning

modelExp IDModel IDaccuracymacro_f1weighted_f1best_val_accdetailmd
transferlearningexp_tl_001MNv3l99.64%99.64%99.64%99.33%detailmd
transferlearningexp_tl_004ResNet5099.59%99.59%99.59%99.28%detailmd
transferlearningexp_tl_002EffB099.49%99.49%99.49%99.38%detailmd
transferlearningexp_tl_003MNv299.33%99.33%99.33%99.38%detailmd
transferlearningexp_tl_005Xception99.28%99.28%99.28%99.49%detailmd
transferlearningexp_tl_006InceptionV398.97%98.97%98.97%98.92%detailmd
transferlearningexp_tl_008VGG1698.77%98.77%98.77%98.82%detailmd
transferlearningexp_tl_007MNv3s98.67%98.67%98.67%98.67%detailmd

MLP — Experiments

modelRun/Tagaccuracymacro_f1weighted_f1best_val_accdetailmd
Mlpuser_reference_adam_100e_b12896.90%96.75%96.90%97.86%detailmd
Mlphigh_lr_fast96.71%96.53%96.71%97.90%detailmd
Mlpbalanced_long96.42%96.30%96.41%97.77%detailmd
Mlpswish_deep96.38%96.23%96.36%97.86%detailmd
Mlpdeep_3layers_768_384_19296.28%96.17%96.26%97.68%detailmd
Mlpbig_batch_51296.23%96.10%96.22%97.46%detailmd
Mlpnarrow_many_4layers96.23%96.08%96.23%97.64%detailmd
Mlpbaseline_large_batch96.23%96.07%96.22%97.73%detailmd
Mlpelu_3layers96.18%96.03%96.17%97.59%detailmd
Mlprmsprop_mid96.14%96.01%96.12%97.68%detailmd
Mlplightweight_small95.99%95.85%95.99%97.38%detailmd
Mlpwide_fast_b51295.80%95.69%95.78%97.38%detailmd
Mlpsgd_nesterov_long95.37%95.24%95.34%97.33%detailmd
Mlpswish_low_lr95.42%95.20%95.41%97.38%detailmd
Mlpno_reduce_lr95.37%95.17%95.34%97.46%detailmd
Mlpno_smote_adam95.33%95.12%95.32%96.30%detailmd
Mlpstrong_dropout95.23%95.10%95.18%97.33%detailmd
Mlpadamw_swish_bigbatch94.85%94.68%94.80%97.29%detailmd
Mlpsgd_conservative94.56%94.29%94.51%94.67%detailmd
Mlprmsprop_bigbatch94.33%94.04%94.27%94.50%detailmd

MLP — Hyperparameters grid_base_ref_*

modelRun/Tagaccuracymacro_f1weighted_f1best_val_accdetailmd
Mlpgrid_base_ref_i03396.80%96.62%96.80%97.86%detailmd
Mlpgrid_base_ref_i03596.76%96.61%96.76%97.99%detailmd
Mlpgrid_base_ref_i02796.61%96.49%96.61%97.86%detailmd
Mlpgrid_base_ref_i02996.57%96.43%96.56%97.73%detailmd
Mlpgrid_base_ref_i02196.47%96.30%96.48%97.77%detailmd
Mlpgrid_base_ref_i01396.47%96.27%96.48%97.68%detailmd
Mlpgrid_base_ref_i01996.42%96.27%96.42%97.81%detailmd
Mlpgrid_base_ref_i00196.42%96.26%96.41%97.73%detailmd
Mlpgrid_base_ref_i00996.38%96.24%96.36%97.64%detailmd
Mlpgrid_base_ref_i02396.38%96.20%96.38%97.77%detailmd